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Abstract. Medical image segmentation poses challenges due to domain
gaps, data modality variations, and dependency on domain knowledge
or experts, especially for low- and middle-income countries (LMICs).
Whereas for humans, given a few exemplars (with corresponding labels),
we are able to segment different medical images even without exten-
sive domain-specific clinical training. In addition, current SAM-based
medical segmentation models use fine-grained visual prompts, such as
the bounding rectangle generated from manually annotated target seg-
mentation mask, as the bounding box (bbox) prompt during the test-
ing phase. However, in actual clinical scenarios, no such precise prior
knowledge is available. Our experimental results also reveal that pre-
vious models nearly fail to predict when given coarser bbox prompts.
Considering these issues, in this paper, we introduce a domain-aware se-
lective adaptation approach to adapt the general knowledge learned from
a large model trained with natural images to the corresponding medical
domains/modalities, with access to only a few (e.g . less than 5) exem-
plars. Our method mitigates the aforementioned limitations, providing
an efficient and LMICs-friendly solution. Extensive experimental analysis
showcases the effectiveness of our approach, offering potential advance-
ments in healthcare diagnostics and clinical applications in LMICs.
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1 Introduction

Medical image segmentation is a fundamental problem in healthcare and clinical
applications. Achieving high-quality segmentation of medical images in specific
domains or modalities (e.g . MRI, CT) typically requires the expertise of domain
specialists with extensive medical training in that particular data modality. With
the development of deep neural networks (DNNs) [12], it has become possible to
automate this segmentation process by training a DNN. To achieve this, the DNN
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Fig. 1: Illustration of the relative relationship and distribution of samples from differ-
ent datasets, using [11] for feature visualisation. A clear domain gap can be observed
between medical data (red points) and general natural images (blue/green points).

model needs sufficient (usually large-scale) training data, i.e. input image and
the paired ground-truth segmentation masks. However, the collection of such
paired data (especially the segmentation mask annotation) is time-consuming
and costly, sometimes even infeasible to acquire. Such challenges have signifi-
cantly hindered the development of automatic medical image segmentation.

On the other hand, for humans, even without domain-specific professional
clinical training, given an example (or a few) of how a medical image was seg-
mented, usually the person can segment similar images in the same medical
domain. This is attributed to the segmentation-related prior knowledge plus
guidance from a few examples. Usually, the more examples are exposed to, the
better the person can perform in that medical domain. Considering the above
observations, we are interested in asking: is that possible to train an automatic
medical segmentation model only with general prior knowledge and a few exem-
plars (rather than extensive domain expert annotations)?

In this paper, we try to answer this question by introducing a new simple
yet effective medical segmentation pipeline, by only looking at a few exemplars,
while still generalise well. Specifically, the proposed approach only takes a few
exemplar medical image pairs as input, and transfers the prior knowledge learned
from general natural images to the target medical domain, with a new selective
adaptation approach. The number of exemplars can be as few as one or five,
and the prior knowledge is based on a large model (e.g . SAM [8]) pre-trained
for natural image segmentation.

Directly applying this model to medical segmentation would fail in achieving
similar performance as in natural images, due to the underlying domain gap (as
illustrated in Fig. 1). This further introduces the challenge of how to adapt the
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prior knowledge to the target medical domain. To address this issue, we propose
a domain-aware selective adaptation module, which enables lightweight training
of large model to transfer the learned representations to the target domain,
without fine-tuning the original large model parameters.

With the newly proposed learning pipeline, the model is able to easily adapt
to different medical domains by applying the proposed transfer approach with
only a few domain-specific exemplars. This is validated over a variety of medi-
cal image modalities, with significantly better performance than state-of-the-art
methods under the same setting. To summarise, the main contributions of our
work are as follows:

– We propose, to our knowledge, the first attempt towards adapting general
prior knowledge to various medical domains, by exposing only a few exem-
plars.

– We introduce a new domain-aware selective adaptation approach, which en-
ables simple yet effective adaptation of large pre-trained models and boosts
their performance in target domains.

– We identify the issues with the use of prompts in existing prompt-based
medical image segmentation models, and propose a coarse prompt setting
that better aligns with real-world scenarios.

– Extensive experiments validate the effectiveness of the proposed method,
achieving state-of-the-art performance under the challenging few exemplar
setting, surpassing existing works by a large margin.

2 Related Work

Medical image segmentation Medical Image Segmentation is essential for
diagnostics and treatment planning by leveraging MRI, CT, and Ultrasound
images to identify and delineate anatomical structures. The advent of Deep
Learning (DL) and Convolutional Neural Networks (CNNs) has significantly
advanced automated segmentation by enabling models to learn knowledge from
large annotated datasets, thus improving accuracy. A significant innovation in
the field of image segmentation is the Segment Anything model (SAM) [8],
which adopts a prompt-based approach similar to large language models such
as Generative Pre-trained Transformers (GPT). SAM employs a Vision Trans-
former (ViT) backbone for encoding and a mask decoder for generating segmen-
tation masks, demonstrating remarkable generalisation across diverse datasets
with task-specific training.

However, such SAM-like models face challenges in medical image segmen-
tation due to the scarcity of annotated datasets and inherent domain differ-
ences like variations in colour, texture, and anatomical structures. These chal-
lenges underscore the necessity for semi-supervised, unsupervised learning, and
transfer learning strategies to effectively utilise unlabelled data and knowledge
from related domains. Recent advancements focus on integrating domain-specific
knowledge and employing techniques like attention mechanisms and generative
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adversarial networks to enhance model generalisability and produce realistic syn-
thetic training data. Despite their success in natural image segmentation, adapt-
ing them to medical domains remains a challenge, driving ongoing research to
overcome data scarcity, enhance model adaptability, and ensure clinical relevance
and interpretability in medical image segmentation.

Adapter-based transfer learning In the field of machine learning, especially
with large pre-trained models in natural language processing and computer vi-
sion, Parameter-Efficient Fine-Tuning (PEFT) [5] has emerged as a crucial tech-
nique for enhancing fine-tuning efficiency and effectiveness without substantial
computational costs. Liu et al . [9] introduce a novel adapter design that extracts
frequency domain information as explicit visual prompts, integrating it into the
intermediate layers of the SAM model. This enhances the model performance in
low-level structure segmentation tasks. Similarly, Zhang et al . [15] applied a low-
rank adaptation (LoRA) [6] fine-tuning strategy to the SAM image encoder and
trained the adapter parameters alongside the SAM mask decoder to customise
SAM for abdominal segmentation tasks.

Adapter-based model tuning, a key method within PEFT, involves integrat-
ing lightweight adapter layers into existing models, allowing for task-specific
adjustments through a minimal number of trainable parameters. This approach
effectively leverages the intrinsic knowledge of pre-trained models while avoiding
extensive retraining, thus preventing overfitting and facilitating rapid adapta-
tion to new tasks with significantly reduced data requirements. Adapters offer
a scalable solution for customising complex models across various applications,
representing a key advancement in making large-scale machine learning models
more accessible and adaptable for specialised tasks.

Prompt-based segmentation Segment Anything Model (SAM) [8] is a pio-
neering work in prompt-based segmentation domain, being the first to develop
a promptable segmentation model that has been pre-trained on a vast dataset.
With appropriate prompts, SAM can generate possible masks for targets without
specific task training, which can be more easily fine-tuned for downstream tasks.
Most related work in the medical field has concentrated on fine-tuning SAM
for specific segmentation datasets, particularly because SAM shows significant
performance degradation on medical images segmentation. For instance, Med-
SAM [10] fine-tuned SAM’s decoder using prompts generated from label masks
across over 30 medical image datasets. SAM-Med2D [4] enhances the SAM model
by incorporating medical-specific prompts and fine-tuning on extensive medical
image datasets, significantly improving its segmentation performance in medi-
cal imaging tasks. This fine-tuning led to improved performance compared to
zero-shot predictions using the original SAM prompts.

However, in practical clinical scenarios, providing accurate prompts for a
large volume of medical data can become cumbersome, especially when organs
and tissues are small and adjacent to each other. Moreover, if the GT masks
used to generate the prompts are already available, why bother segmentation to
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Fine-tune SAM w / fine-grained bbox prompt

Inference w / fine-grained prompt

Fine-tune SAM w / coarse prompt

A B C D

Inference w / coarse prompt Inference w / fine-grained prompt Inference w / coarse prompt

Coarse bbox prompt generation process

100% rate 95% rate 85% rate 75% rate 15% rate…
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Fig. 2: Four settings of using bbox prompts during training and testing stages. The
coarse bounding box prompt is designed to be GT-agnostic, with different ratios indi-
cating the proportion of pixels by which the box region is shrunk inward relative to the
entire image. Pseudo-code for coarse bbox prompt generation is shown in Algorithm 1.

generate the masks? Creating precise prompts often requires domain-specific
expertise, significantly increasing the training cost of the model. Above all, it
becomes practically significant to have a model performing efficient inference
without relying on precise prompts and extensive labelled training data dur-
ing the training and inference phases. Such a model would align better with
real-world applications, addressing the challenges of prompt accuracy and the
availability of highly accurate labelled data.

3 The Visual Prompt in Medical Image Segmentation

The segment anything model (SAM) can adopt many types of visual prompts,
e.g . scribbles, clicks, or boxes to segment the arbitrary object within the image. It
demonstrates highly generalised segmentation performance using prompts during
training and testing. This paper focuses on the form of a bounding box prompt.
Consequently, mainstream approaches to applying SAM for medical image seg-
mentation follow the setting: utilising prompts in both training and testing. We
argue that the prompts used in previous methods for medical segmentation is
inappropriate for clinical scenarios. We categorise prompts into two types: fine-
grained prompts and coarse prompts. The fine-grained prompts, as shown
in Fig. 2 A and C, are customary user-provided or generated from manually
annotated results. They are bespoke for each image and provide strong prior
knowledge of the target location. Coarse prompts, as illustrated in Fig. 2 B and
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Algorithm 1 Pseudocode (PyTorch-style) for coarse bbox prompt generation

B, C, W, H = image.shape
# the image is a square size
offset = args.bbox_rate * W

# generate the coarse bbox with rate
box_prompt = torch.tensor([[[W - offset, H - offset, offset, offset]]], device=model.device,

dtype=torch.float64)

# using the coarse bbox prompt
outputs = model(pixel_values = batch["pixel_values"].to(model.device),

input_boxes = box_prompt,
multimask_output = False)

D, remain consistent across different images and offer almost no prior knowl-
edge. Note that our definitions of fine-grained and coarse prompts differ from
those in [14]. Based on these two types of prompts, as shown in Fig. 2, there
are four settings of using bbox prompts during training and testing: Setting
A: trained with fine-grained bbox prompts and tested with fine-grained bbox
prompts. Setting B: trained with fine-grained bbox prompts and tested with
coarse bbox prompts. Setting C: trained with coarse bbox prompts and tested
with fine-grained bbox prompts. Setting D: trained with coarse bbox prompts
and tested with coarse bbox prompts.

Most SAM adapters in medical image segmentation rely on user-provided
prompts or assume prompts generated from segmentation annotations, i.e. the
lesion area is already known, and a bounding box prompt for the lesion area
is given, expecting the model to accurately segment the lesion within this re-
gion (setting A). However, this assumption is not applicable in real diagnostic
scenarios. For unseen samples, the lesion area is unknown, making it infeasible
to provide such precise fine-grained prompts. Therefore, a prompt setting that
aligns more with real-world applications should be settings B and D, where only
a coarse bounding box prompt is provided during inference, e.g . a box region
almost the same size as the original image. Inconsistent setting of prompt used
in training and testing may affect the performance. Thus, this paper primarily
investigates setting D in Fig. 2. It is more challenging and practical compared
to the other settings since there is no accurate lesion area information provided.

4 Method

In this paper, we propose an approach to better leverage and adapt general prior
knowledge for medical image segmentation. Instead of fine-tuning all the network
parameters, we retain the pre-trained image encoder parameters to leverage the
priors from large-scale training. The overall model design is shown in Fig. 3.
Specifically, our FEMed model comprises three key components: the High Fre-
quency Adapter extracts frequency domain features via fast Fourier transform;
a Multi-Scale Feature Adapter captures multi-scale features through adaptive
pooling; the Feature Selector learns to determine which features to fuse with
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Fig. 3: The proposed FEMed architecture. The pre-trained SAM image encoder is
equipped with two specialised Adapters: (a) the Multi-Scale Features Adapter that
captures features at various granularities through pyramid pooling, and (b) the High-
Frequency Adapter that emphasises salient textural details via frequency domain anal-
ysis. The output features from these Adapters are fed into the Selection Module which
contains a trainable decision layer that takes F I

k (where k refers to the features from
the k-th layer) as input to generate the weights for aggregating Ff and Fp.

the intermediate results of each image encoder transformer block. By freezing
all parameters of the image encoder and only training the adapters, the model
efficiently learns medical knowledge with fewer training exemplars. Considering
practical medical application scenarios, our method does not rely on fine-grained
prompts for both training and testing phases. Alternatively, the design aims to
accurately segment lesion areas under the coarse visual prompt setting.

High frequency adapter We initially apply the Fast Fourier Transform (FFT)
to the original image. The FFT effectively transforms the image from the spa-
tial domain to the frequency domain, allowing us to isolate and analyse the
high-frequency components. Following the FFT, we perform patch embedding
as described in [9], which involves segmenting the transformed image into smaller
patches and embedding these patches into a suitable feature space. These result-
ing embeddings, rich in high-frequency information, are then combined with
the original image embeddings. This combination ensures that both spatial and
frequency domain features are retained and integrated. The combined embed-
dings are subsequently fed into a lightweight Multi-Layer Perceptron (MLP) with
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learnable parameters. The role of this MLP is to process the embeddings and
produce clues that encapsulate additional insights from the frequency domain.
The output clues generated by the MLP captures the nuanced details from the
frequency domain and incorporates them into the image analysis process. To
facilitate further operations, the clues is reshaped into a four-dimensional ten-
sor. This reshaping can be viewed as an inverse transform, where the previously
obtained clue is converted back to its original dimensional format, ready for
subsequent processing stages. By focusing on high-frequency feature extraction,
this approach equips the model with enhanced capabilities to discern subtle de-
tails within the image. Such detailed analysis leads to significant performance
improvements, allowing for more accurate and reliable image analysis outcomes.

Multi-scale features adapter The Multi-Scale Feature Adapter is designed to
leverage the hierarchical feature of spatial data in medical images. By aggregat-
ing features across different scales, this adapter captures both global and local
contexts, which are crucial for interpreting complex visual patterns, especially in
medical images. The process begins with the input feature map being subjected
to a global average pooling layer. This layer consolidates the spatial informa-
tion into a compact representation, effectively capturing the overall context of
the input features. Following this, the condensed feature map undergoes channel
processing, which aims to learn and enhance the correlations between differ-
ent channels. Subsequently, the channel-processed feature map is fed through a
pooling pyramid architecture, which consists of four adaptive average pooling
layers, each producing output sizes of {1 × 1, 2 × 2, 4 × 4, 8 × 8}, respectively.
These varying scales of feature maps are critical as they encapsulate information
from different levels of detail within the image. Once these multi-scale feature
maps are generated, they are resized back to the original image dimensions using
interpolation operations. This step ensures that all feature maps, despite their
different scales, are aligned in size and can be effectively merged. The final step
involves fusing these resized multi-scale feature maps into a single, comprehen-
sive feature representation. This fusion process integrates the diverse information
captured at various scales, providing a holistic view of the image features. The
Multi-Scale Features Adapter is essential for extracting and merging multi-scale
features from the input feature map, resulting in a robust new feature represen-
tation. This multi-scale approach ensures that the model is responsive to features
of all sizes, significantly enhancing its ability to detect and recognise patterns
across different spatial scales. This capability is particularly crucial for tasks
such as medical image segmentation, where precision in identifying features of
varying scales can greatly impact the accuracy and effectiveness of the analysis.

Selection module And the core of our approach is the Feature Fusion Selec-
tor, a novel mechanism that dynamically determines the integration strategy
for image features extracted by the Multi-Scale Features Adapter and the High
Frequency Adapter. The selector employs a decision-making process based on
learnable weights W = [w1, w2], where W = Softmax(MLP (F k

I )), k refers to
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the features from the k-th layer, FI is the feature embedding from each trans-
former layer. The aggregated image feature F is then updated as:

F = (w1 ∗ Ff + b1) + (w2 ∗ Fp + b2) (1)

where Ff denotes the high-frequency feature, and Fp represents the multi-scale
feature. The bias term B = [b1, b2] is a learnable balancing factor that adjusts
the importance between the multi-scale and high-frequency features. The weights
w1 and w2 are learnable parameters constrained between [0,1], representing the
relative importance of the features.

The selector employs a linear layer to generate decision scores based on the
input features, which are then passed through a softmax function to produce
selection weights. The selection process determines which type of feature (fre-
quency domain or multi-scale) to emphasise. This feature selection ensures clear
physical significance and enhances the decision-making process of the model.
The fusion of features is aggregated by dynamically adjusting the weights as-
signed to the frequency domain and multi-scale features. This structure allows
the model to dynamically adjust the contribution of each feature type at each
transformer layer, enhancing the model capability to capture and integrate rele-
vant features for medical image segmentation tasks. To address the observation
that multi-scale features contribute more significantly to segmentation accuracy
on medical tasks, a learnable bias term is introduced. This bias term increases
the weight of the multi-scale features by initialising bias terms to b1 = 0, b2 = 1
during the fusion process, the value of the weights will be updated as the model
is optimised.

Loss function Dice loss is used due to its effectiveness in addressing class
imbalance and handling small target regions as it directly measures the overlap
between the predicted and actual segmentation. As a supplement, Cross-Entropy
Loss, being a pixel-level loss function, is more appropriate for large target re-
gions. The combination of these two loss functions ensures robust performance
in medical image segmentation tasks. As a result, the loss function used for our
model training is:

L = αLDice + βLCE . (2)

5 Experiment

5.1 Implementation Details

Our model is implemented using PyTorch and MONAI [2] and trained on a single
NVIDIA 4090 GPU. The learning rate is set to 0.0001 with a decay of 0.01. All
input images are normalised to have a zero mean and unit standard deviation
for non-zero voxels. During training, 3D images and labels are sliced using a
sliding window approach with a two-dimensional size of 256× 256. Additionally,
we perform intensity scaling on the images to adjust the pixel intensity values
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from a range of -1,000 to 2,000 to a standardised range of 0 to 255, and simi-
larly, label intensities are adjusted within the same output range for consistency
and normalisation purposes. The batch size is set to 1. The number of training
exemplars ranges within {1, 5, 10}. The default coarse bbox rate is 0.95. Unless
otherwise specified, the default setting of using bbox during training and testing
is D. Following [10], we resize all the images to a larger scale with 1, 024× 1, 024
to achieve better performance.

All models are trained for a total of 100 epochs using the Adam optimiser.
Our experiment employs an early stopping mechanism with 10 epochs tolerance
to prevent overfitting during model training. The decay rate is applied every 30
epochs. The balancing factors α and β in the loss function are both set to 1.

5.2 Datasets

Our study leverages multiple publicly available benchmarks to validate the ef-
fectiveness of the proposed segmentation approach across three different medical
imaging datasets. Each dataset comes with its unique challenges and characteris-
tics, catering to the segmentation of various anatomical structures and patholo-
gies. Here, we describe the datasets used and our approach to validation and test-
ing. The Brain Tumor Segmentation (BraTS) 2021 challenge dataset [1] is widely
used for medical segmentation methods. It includes MRI scans of 1,251 subjects
across four 3D MRI modalities. Liver Tumor Segmentation (LiTS) 2017 [13]
challenge dataset. This dataset includes CT scans for the task of liver tumour
and liver segmentation, presenting a diverse set of imaging conditions and tu-
mour appearances. We also employed the RGB colour image dataset Kvasir-
Seg [7], specifically designed for pixel-level segmentation of colorectal polyps.
This dataset comprises 1,000 images of gastrointestinal polyps along with their
corresponding segmentation masks, all meticulously annotated and verified by
expert gastroenterologists. Our experiments on this dataset validate the efficacy
of our method in handling colour medical images.

5.3 Quantitative and Qualitative Analysis

The quantitative results of our proposed method are shown in Table 1. Under
the few-shot setting, where only 1, 5, or 10 exemplars are used for training, our
method consistently achieves the best performance. Specifically, compared to
previous models, our method shows significant improvements on various medical
modalities/datasets. On the BraTS21 dataset, our method achieves a perfor-
mance gain of 0.6, 2.87, and 8.66 mIoU for the respective exemplar sizes. On
the LiTS17 dataset, the mIoU improvements are 1.63, 2.93, and 3.23. On the
Kvasir-SEG dataset, our approach also improves the 1- and 5-exemplar settings
by 0.74 and 4.13 in mIoU.

Moreover, changing the bbox prompt setting from A to B (i.e. more prac-
tical test setting) led to a significant performance drop for SAM [3], as well
as for models fine-tuned on large medical datasets such as MedSAM [10] and
SAM-MED2D [3] (as shown in the shaded first six rows of Table 1). This drop
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Table 1: Comparison of our method with SAM and SOTA segmentation methods,
without fine-grained bbox prompt on multi-modal medical datasets. SAM [8], Med-
SAM [10] and SAM-MED2D [3] are included in comparison. The ⋆ represents setting
A, while † indicates setting D. NTS: number of training exemplars. If NTS is not
specified, it indicates that we directly loaded the pre-trained weights provided by the
original methods and tested the results without any additional training.

BraTS21
MRI

LiTS17
CT

Kvasir-SEG
RGBMethod NTS Dice↑ Hd95↓ mIoU↑ Dice↑ Hd95↓ mIoU↑ Dice↑ Hd95↓ mIoU↑

SAM ⋆ - 55.31 19.36 42.27 59.76 48.46 47.21 74.04 66.96 61.35
MedSAM ⋆ - 58.20 16.23 44.18 48.84 45.94 35.63 81.81 35.16 70.83
SAM-Med2D ⋆ - 60.01 14.01 46.24 52.23 46.23 38.23 79.92 45.09 67.88
SAM † - 8.80 141.55 4.79 29.85 169.41 19.95 48.18 133.72 36.93
MedSAM † - 4.32 135.18 2.26 13.64 146.18 8.40 48.04 133.98 36.74
SAM-Med2D † - 4.28 72.46 2.88 14.32 143.21 9.92 48.32 133.55 36.09
SAM† 12.79 52.52 9.06 40.04 116.28 28.09 25.17 104.63 16.52
MedSAM† 12.78 51.50 8.84 12.07 114.01 7.79 31.43 105.96 17.50
SAM-Med2D† 1 12.20 51.56 9.02 15.23 113.32 10.21 7.77 132.21 4.37
Ours † 14.43 48.55 9.66 42.60 108.08 29.72 28.83 100.05 18.24
SAM† 29.84 49.95 22.32 51.30 82.72 39.87 43.04 102.18 31.00
MedSAM† 29.42 41.73 21.41 47.18 84.79 35.34 39.13 103.60 27.16
SAM-Med2D† 5 27.79 43.80 24.83 52.56 79.78 41.23 40.08 106.79 28.18
Ours † 34.12 43.50 25.19 55.98 77.68 44.16 47.80 99.28 35.13
SAM† 34.08 42.20 25.74 56.35 70.51 45.03 52.12 114.54 40.47
MedSAM† 37.72 43.79 28.67 52.17 73.17 41.96 47.56 116.64 35.06
SAM-Med2D† 10 41.60 37.29 31.04 56.95 68.21 43.23 49.93 121.49 37.67
Ours † 51.29 32.45 39.70 58.20 65.96 48.26 52.34 113.36 39.80

is reasonable due to the inconsistency between training and inference settings.
However, when retrained with consistent training and testing settings (i.e. set-
ting D), the performance of these models was far worse than under setting A.
This surprising result suggests that models performing exceptionally well under
controlled settings (A) may not generalise effectively to real-world scenarios (D).
This insight indicates that existing studies in the literature on SAM-adapter for
medical image segmentation are arguably not on the right track, and should be
rectified. Furthermore, under setting D, SAM overall outperforms MedSAM and
SAM-Med2D. This interesting observation suggests that in real-world medical
applications with a limited number of training exemplars, the original SAM al-
ready shows better generalisability and applicability compared to models further
trained on large medical datasets with paired GT mask labels.

Qualitative results in Fig. 4 further illustrate our findings. When trained and
tested using setting D, which employs a coarse bbox prompt covering 95% of the
original image, predictions from previous methods tend to almost cover the entire
image, failing to locate the lesion area. In contrast, our method can well segment
the lesion area, even for very small regions, as demonstrated by the qualitative
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results shown in the second row of Fig. 4. This precision highlights the robustness
and accuracy of our approach, even under challenging conditions. The ability of
our method to accurately identify and segment lesion areas, despite the coarse
bounding box prompts, underscores its potential for practical applications in
medical image segmentation.

Fig. 4: Qualitative performance across three medical datasets (LiTS17, BraTS2021,
and Kvasir-Seg) using different methods: MedSAM [10], SAM-MED2D [3], and our
proposed method (“Ours”). For each method, we show the segmentation results with
different numbers of exemplars (i.e. 1, 5, and 10).

5.4 Ablation study

Effectiveness of the proposed components We conducted ablation exper-
iments to analyse the different components of our proposed method. The re-
sults from Table 2 illustrate the effectiveness of each component. Particularly,
the High-Frequency Adapter (HFA) module contributes more compared to the
Multi-Scale Features Adapter (MSFA) module under setting D.

Table 2: Ablation study on each component. Results are tested by training models with
10 exemplars. HFA: High Frequency Adapter, MSFA: Multi-Scale Features Adapter.

Component BraTS LiTS17 Kvasir-SEG
HFA MSFA Selector Dice↑ Hd95↓ IoU↑ Dice↑ Hd95↓ IoU↑ Dice↑ Hd95↓ IoU↑

✔ ✗ ✗ 44.56 38.21 35.33 56.31 68.32 46.57 51.06 118.36 38.90
✗ ✔ ✗ 42.19 49.23 31.36 49.21 78.21 39.08 49.29 107.82 36.74
✔ ✔ ✗ 48.23 35.34 37.45 55.21 70.01 45.24 49.86 108.01 37.37
✔ ✔ ✔ 51.29 32.45 39.70 58.20 65.96 48.26 52.34 103.36 39.80
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We hypothesise that the superior performance of the HFA module is due to its
ability to capture high-frequency information, such as edges, textures, and fine
details. This high-frequency information is crucial for accurate segmentation,
particularly when using coarse bounding box (bbox) prompts. By leveraging
these detailed features, the model can more precisely delineate the target areas,
even with less precise initial prompts.

These findings highlight the importance of incorporating high-frequency fea-
ture extraction in our approach, significantly enhancing segmentation perfor-
mance for medical images. This improvement is especially evident when dealing
with coarse bbox prompts, which are more practical and aligned with the sce-
narios of real-world medical imaging applications.

Effectiveness of learnable bias in the proposed selector module We
conducted an ablation study on the learnable bias term in the proposed selec-
tor module, as detailed in Table 3. In the absence of the learnable bias term,
the high-frequency features and multi-scale features are directly combined using
weighted fusion. The results indicate a significant improvement in the segmen-
tation performance upon applying the learnable bias term.

Table 3: Ablation study on learnable bias in the selector. The symbol ✗ indicates
without adding learnable bias while symbol ✔ indicates with adding learnable bias.

Bias BraTS21 LiTS17 Kvasir-SEG
Dice↑ Hd95↓ mIoU↑ Dice↑ Hd95↓ mIoU↑ Dice↑ Hd95↓ mIoU↑

✗ 42.01 98.63 29.44 46.04 81.50 33.60 24.43 62.93 15.89
✔ 43.96 99.46 31.28 46.85 77.66 35.10 32.50 52.77 22.65

This improvement suggests that the learnable bias term plays a crucial role
in enhancing the fusion process by effectively modulating the contribution of
each feature type. By allowing the model to adjust the bias dynamically, the
integration of high-frequency and multi-scale features becomes more refined and
accurate, leading to better overall performance. This finding underscores the
importance of the learnable bias term in optimising the feature fusion mechanism
within our segmentation framework.

Impact of different bbox rates As shown in Fig. 2, we can generate coarse
prompts at different rates. To evaluate the impact of these variations, we con-
ducted ablation experiments on coarse prompts at various rates, and the results
are presented in Fig. 5. The performance trends of different models with coarse
bounding box (bbox) prompts at different rates show inconsistency. Overall,
there is a tendency for performance to decrease as the rate decreases. This trend
makes sense intuitively as a smaller rate tends to result in a bbox failing to fully
encompass the lesion area, thus leading to poor performance.
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Fig. 5: The effect of varying bounding box overlapping rates (refers to the proportion
of pixels by which the box region is shrunk inward relative to the entire image, i.e. the
rate in Fig. 2). All results are reported via training with a single exemplar.

Notably, in comparison to MedSAM [10] and SAM-Med2D [4], our method
and SAM [8] demonstrate relatively stable trends across different rates. This
stability indicates that our approach, along with SAM, maintains robustness
despite changes in the granularity of the prompts, ensuring more reliable seg-
mentation outcomes under varying conditions. The observed stability in perfor-
mance underscores the effectiveness of our method in maintaining high-quality
segmentation even when the prompt rate varies, highlighting its potential for
practical application in diverse and dynamic medical imaging scenarios.

6 Conclusion

In this paper, we presented a new approach for medical image segmentation
that leverages only a few (i.e. 5) exemplar inputs and domain-agnostic prior
knowledge for adaptation to specific medical domains. Through selective adapta-
tion, our method circumvents the need for extensive domain-expert annotations,
addressing the challenge of scarce and costly medical segmentation data. Our
extensive experiments across various medical image modalities demonstrate the
effectiveness and superiority of our approach, marking a prominent advancement
over current state-of-the-art methods. This not only validates the feasibility of
achieving high-quality medical image segmentation with limited examples but
also potentially pave the way for leveraging pre-trained models in medical imag-
ing applications, thereby enhancing the potential for automation and efficiency
in healthcare diagnostics. Additionally, we highlight the impracticality of previ-
ous prompt-based segmentation models that assume the availability of precise
location of lesion areas for fine-grained bbox prompts, even during the inference
phase. Based on this, we propose to use the coarse bbox prompts, which align
better with real-world applications.
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